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Analysis of Edge-Coupled Shielded Strip and
Slabline Structures

STEWART M. PERLOW, SENIOR MEMBER, IEEE

Abstract — A method for the analysis of edge-coupled strip and slabline

structures is presented which uses relatively simple algebraic expressions.

The described procedure can be used to analyze directional couplers,

interdigitated and comb line filters, and any other strnctnres formed by an

array of rectangular edge-coupled transmission lines, of arbitrary thick-

ness, sitoated between two parallel plates. The analysis is complete in that

it allows the conversion of the physical dimensions of the structure into a

set of admittance parameters which completely describes its electrical

behavior, including both conductor and dielectric losses.

I. INTRODUCTION

A NALYSIS OF shielded strip or slabline structures,

such as directional couplers or interdigitated and

comb line filters, requires a technique for converting the

physical dimensions of the circuit into electrical parame-

ters. Cohn has provided rigorous formulas relating the

dimensions of zero-thickness coupled striplines to their

odd- and even-mode impedances [1]. These solutions are

based on successive transformations in a conformal map-

ping technique. He attempted to extend these results to

thick strips by utilizing intuitive approximations for the

odd- and even-mode fringing capacitance of the thick

strips. These approximations work well over a limited

range of strip thicknesses and strip separations.

Getsinger provided a rigorous solution for the thick-strip

case by using an exact conformal mapping method [2].

However, his analytic results are given in terms of various

elliptic functions which require a complicated process of

evaluation of the functions themselves and the arguments

of the functions. In order to make these results useful to

the circuit designer, Getsinger provides accurate graphs

which are used to extract the desired information.

Unfortunately, neither form of Getsinger’s solution, ana-

lytic or graphical, is readily adaptable to computer-aided

design algorithms. The analytic results require com-

plicated, time-consuming algorithms for evaluation. The

graphical results could be accommodated by storing data

for each curve in memory and interpolating between data

points for values that are not stored. Although this tech-

nique is acceptable in extreme circumstances, it certainly

does not make efficient use of computer memory.

The technique developed in this discussion utilizes easily

solvable analytic expressions, based upon both Cohn’s and

Getsinger’s results. In addition, it extends these results by
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providing an expression for the effective width of very

narrow strips. The effect of conductor and dielectric losses

is also included. The expressions provide a method for

achieving a very efficient algorithm for the analysis of

edge-coupled strip and slabline structures which can be

used on a computer or even on hand-held scientific calcu-

lators.

11. CHARACTERISTIC ADMITTANCE

In considering the analysis of an array of coupled lines,

the admittance matrix for the entire array can be formed if

the odd- and even-mode admittances between adjacent

lines along with the appropriate propagation constants are

known.

Transmission-line theory shows that the relationship

between the characteristic admittance of a lossless uniform

transmission line, which is operated in the TEM mode, and

the static capacitance per unit length is

,=VC gc
o

qE

(1)

where

u speed of propagation along the line,

e, relative dielectric constant of the medium,
. . .

& Per~tl~ty of the dielectric medium,
q Impedance of free space (376.73 0/0).

In the case of two coupled transmission lines operating

in the TEM mode, propagation along the lines can be

broken into two independent or orthogonal modes. In the

most general case, these two modes are referred to as the

II and C modes [3]. Since this discussion will be limited to

a medium which is uniform or homogeneous. these two

modes reduce to the well-known odd and even modes [1],
[4], [5]. The characteristic admittance of the odd mode for

each of the coupled strips is the same as the admittance for

each of the strips if an electric wall (at the same potential

as the upper and lower shielding planes) were placed

between them. The characteristic admittance for the even

mode for each of the strips is the same as the admittance

of each strip if the electric wall were replaced by a mag-

netic wall.

The even-mode characteristic admittance of each line is

related to the self-capacitance of the line (the capacitance

between the line and ground), which is also known as the
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even-mode capacitance, by the relationship
k

(2a) I
T

‘i
● oe

(2b) P “1 + ‘1 -’i————“, -’=+%+%+
i,

where the subscripts refer to the first and second strips. ~ZZZZ%ZZ

The odd-mode characteristic admittance of each line is (a)

related to the coupling capacitance between the lines and

the self-capacitance of the lines by the relationships 1 1 1 1 1,,2,,,1 ~
“*V e

‘0012=:(:++)“a) ,fJJ~<lJE““”
‘021=%++%)‘3b)

fel

(b)

It is easily seen that if the self-capacitances and the

coupling capacitances are determined, the even- and odd-

mode admittances are known.

III. THE COUPLING CAPACITANCE

Fig. l(a) provides a representation of the physical di-

mensions of a coupled line array. The capacitive compo-

nents of the lines are shown in Fig. l(b). It will be assumed

in this discussion that the thicknesses of all the strips in

the array are the same and that the coupling between

nonadjacent strips is negligible.

The coupling capacitance per unit length of the lines, CC,

can be calculated using the exact analytic equations for the

even- and odd-mode fringing capacitances given by Cohn

for zero-thickness lines, and compensating for line thick-

ness by the value A as shown in (4), (5), and (6) below. The

capacitance per unit length for a strip of thickness t, which

is a function of the strip separation s, and ground-plane

spacing b is
r,-. .

(4)

where the coupling capacitance per unit length for zero-

thickness strips is

[3(=o=:1n[c0th(Hl
(5)

and

[

()
– 0.57518

1.0+2.13507+ ; :< 0.3

A=

()

–0.11467
(6)

1.0+ 3.89531; ; Lo.’.b–

Fig. 1. (a) Physical structure of coupled line array. (b) Capacitive
components of the array.

sidered. The outside edges of the first and the last strip

have the same fringing capacitance that a single isolated

strip would have. This will be called the external fringing

capacitance; it is denoted by C, and is a function only of

the strip’s thickness and the separatism between ground

planes. The second type occurs on the interior edges of the

strips and is denoted by C’.. This interior fringing capaci-

tance, also known as the even-mode fringing capacitance,

is a function of strip thickness, ground-plane separation,

and spacing between adj scent strips.
The external fringing capacitance Cf can be determined

by subtracting the parallel-plate capacitance from the total

capacitance of a single isolated strip between ground planes

[6] or by using the exact equation for a semi-infinite strip

given by Cohn [7]:

‘= ‘[2t,ln(t, +l)-(t, -l)lln(t~ -1)] (7)
ET

where

1
lb:=

( )“
1–;

The internal, or even-mode, fringing capacitance Cf.,

like the coupling capacitance, is a function of the strip

thickness, the separation of the ground planes, and the

spacing between the strips. It can be circulated from

‘=A(:-:ln[cOsh(ii)ll+B ‘8)e

The thick strip correction factor A was derived from where A is the value defined in (6) and B is defined as

Getsinger’s results [2] by a judicious choice of normaliza- follows.
tion factors. For t/bs 0.5636,

IV. FRINGING CAPACITANCES

I

( )
– 0.2933+ 3.333; ; ; <0.08

The fringing capacitances represent the nonuniform field B=, (9)
regions on the edges and corners of the strips. In this

discussion, two types of fringing capacitances will be con-
–0.56: :>0.08.
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For t/b >0.5636,

[

–0.1653 –5.6814; +6.7475; ~ :<0.08

B=

–0.62+0.54: :>0.08.

(lo)

The coefficient of the A term in (8) is Cohn’s formula for

the even-mode fringing capacitance for the zero-thickness

case. The equations determining ‘the value of B were

generated from Getsinger’s data.

V. PARALLEL-PLATE CAPACITANCE

The fringing capacitances derived lby Cohn and Getsinger

were obtained assuming that each strip was of semi-

infinite width. This assumption was required to eliminate

the possibility of any interaction between the fringing

fields on both edges of the strip. If the width of any of the

strips is srmall enough, the distortion of the fields at the

edges of the strip can extend across the entire width of the

strip, eliminating the parallel-plate region completely.

Getsinger approached this problem by defining an effec-

tive width w ~ff, which was related tcl the physical width by

the relationship w ,ff = 1.2 w – 0.07( b – t). This relationship

was to be used if w < 0.35(b – t); it is valid if 0.1<
w ,ff /( b — t ) <0.35. This formula is based on a linear

approximation to the exact fringing capacitance of a single

strip of zero thickness. Riblet has pointed out that this

criterion, based on zero-thickness strip, is too cautious for

strips with thickness [8].

A better approximation for the effective width can be

obtained by subtracting the fringing capacitances from the

total capacitance .of an isolated thick strip. The resulting

capacitance is the effective parallel-plate capacitance per

unit length. The effective width c~f the parllel-plate or

uniform field region is then calculated from the effective

capacitance. Fig. 2 shows the rekltionship between the

physical width and the effective width for several values of

thickness, along with the results using Getsinger’s linear

approximation. For zero-thickness strips, the linear ap-

proximation is very accurate in the region 0.142< W/b <

0.27. Above w/b = 0.27, the linear approximation in-

creases a little too rapidly. As the thickness increases, the

discrepancy between the two approximations increases.

The linear approximation indicates that the effective width

is not the same as the physical width when t/b = 0.2 and

w/b is less than 0.28. The thick-strip approximation indi-

cates that both widths are the same for a value of w/b as

small as 0.1 and are very nearly equal for values of w/b as

small as 0.05. For t/b = 0.4, the effective width and the

physical width are the same for values of w/b> 0.04. The
linear approximation indicates that this condition is not

met until w/b is at least 0,21.

The following equation relating the physical width w to

the effective width w ,ff was obtained by using [6] to

calculate the total capacitance of a thick strip of any

.4
- t/b=.4

–––- t/b=.2

------- t/b=O

.3 -

$
+. 2 -

~

.1

linear approximation

o .1 .2 .3 .4

wlb

Fig, 2. Relationship between the effective and physicaf widths of
finite-width strips of various thicknesses (calculated using (11)) along

with Getsinger’s linear approximation.

width:

w eff

b=
[rWt

——

:–wco 1.0– Q
0.015

Wt
– <0.015

%b

(11)

where

2
WCO=–ln2+f– z

77 -+4::)1 ’12)77
is the correction for zero-thickness strips.

Examination of the correction term indicates that the

difference between the effective width and the physical

width is negligibly small if

(13a)

or

w 0.015
—>—
bt”

(13b)

The parallel-plate capacitance from the strip to one of the

grounding planes, CP, is calculated using the effective

width:

5’2~.
e b–f

(14)

VI. THE TOTAL SELF- OR EVEN-MODE CAPACITANCE

The total self-capacitance (the even-mode capacitance)

for each strip of the array can be calculated as the sum of

all the component capacitances, as shown in Fig. l(b).
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Fig. 3. Reduction of physicaf dimensions by the skin depth.

The first and the last strip of the array each have an

external fringing capacitance, a parallel-plate capacitance,

and an internal or even-mode fringing capacitance compo-

nent. Therefore, the total self-capacitance is

c1 = 2(C, + Cpl + qel)

CN = 2(cf + cpN + cfeN)

where the subscript 1 refers to the first line,

N to the last line.

(15)

(16)

and subscript

Each of the interior lines has two even-mode fringing

capacitance components and a parallel-plate component:

C~ = 2(C~=I~.lJ + Cpk + Cfek) (17)

where the subscript k refers to the strip; Cfg[~ _ ~, is the

even-mode fringing of the strip on the edge closest to the

previous strip; and Cf,~ is the even-mode fringing capaci-

tance on the edge closest to the next strip. Note that the

external fringing capacitance Cf is the same for the first

and the last strip since it is implicitly assumed that all

strips are of the same thickness.

VII. LINE LOSSES

The losses of the coupled line array are characterized by

using the attenuation constant a, which is the real part of

the propagation constant. The calculation of the compo-

nent of a due to conductor ‘losses is accomplished by using

Wheeler’s incremental inductance rule and numerical dif-

ferentiation [9], [10]. The process is very simple. The skin

depth ?3 is calculated using the relative resistivity of the

metal being used as

{
ii= 0.0822 %

f
(18)

where p, is the resistivity of the metal relative to copper, f
is the frequency in gigahertz, and 8 is the skin depth in

roils.

The coupling capacitances and self-capacitances are

calculated using the physical dimensions. They are then

recalculated using the,, new dimensions which would occur

if each metal surface were reduced by the value of 8/2, as

shown in Fig. 3. The new dimensions become

b’=b+~

t~=t–~

w~=wk–~
(19)

s;=sk+8

where subscript k refers to a particular strip.

The attenuation constants can then lbe calculated using

the original values of capacitance, C~ and Ck,(~+ ~,, and

the new values calculated using the dimensions corrected

by the skin depth, C{ and c~,fk+~) (the subscripts k, (k + 1)

referring to the coupling capacitance between strips k and

k + 1):

ak, (k+l) ‘“~&[l-(::f::H)l(Np
(20)

a(k+l), k

H )1=+-&1-;:;;;;k (NP/m)
“,

I-Lak = T ‘r 0.2998 ml1 – ~ (Np/m).
k

(21)

(22)

The attenuation constants with a single subscript are the

even-mode attenuation constants and those with the dou-

ble subscript are the odd-mode attenuation constants. Note

that between every pair of lines there are two different

attenuation constants. In general, they have different val-

ues; to be equal the even-mode capacitances must be

equal.

The component of the attenuation constant due to losses

in the dielectric is calculated as

where tan tld is the 10SSttangent of the dielectric.

In addition to specifying the attenuation constant, the

imaginary part of the propagation constant, /?, is also

required:

where

Ao= % (in)= ~ (cm).

The propagation constants are

(24)

?’k=(ak+ad)+j~
?’k,(k+l) = (ak,(k+l) + ad)+ -#

?’(k+l),k = (a(k+l), k + ad)+ ~~” ‘ (25)

VIII. THE ADMITTANCE MATRIX

The admittance matrix for the coupled line array com-

pletely describes the network. The elements of the admit-

tance matrix are functions of the ocld- and even-mode

admittances [11]. The odd- and even-mode admittances

were described in (2) and (3) in terms of the coupling

capacitances and the se]f-capacitances. The general form

of the mode admittances of the k and the k + 1 line of the
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array is

even mode:

2 4

~ &-ck
Oek — (26a)

e

; %+1)

i[

m
D_ c1

YOe(k+l) = — (26b) ~ ~
v&

odd mode:

2k 2(k+l) 2N

[

z

0000 g
F-
VI

g q,,,+,, + ~( )
tlb

YOok, (k+l) = (27a) 1 3

T .5 &
Fi~. 4. Numbering ofnodes of thecoupled line array.

2k-1 2k+l 2N-1

Y
& 2C@,k+l)+c@+l)

Oa(k+l), k =
-( )

(27b)
~ & &“

If the nodes of the network are arranged as shown in

Fig. 4, where nodes 1 and 2 are at the ends of strip 1,

nodes 3 and 4 are at the ends of strip 2, and in general the

nodes 2k – 1 and 2k are at the ends of strip k, then the

admittance matrix of the coupled lines is of the form

Yll Y12 ““” Yl, m ““’ Y1,2N

Y21 Y22 ““” Y2, m ““” Y2,2N

. . . . . .

. . . . . .

Yml Ytn2 ““” Ym>m ““” ym,2N
. . . . . .
. . . . . .

Y2N,1 Y2N,2 “ “ “ y2N, m ““” Y2N,2N

where the subscripts refer to the nodes at the ends of the

strips, and N is the number of strips.

The admittance matrix can be filled in the standard way,

i.e.,

1) The self-admittance of node m is the sum of all the

admittances connected to node m.

2) The mutual admittance between node m and m + 1 is

the negative of the admittance connected directly between

nodes m and m +1.

The self- and mutual admittances for any two adjacent

lines in the coupled line array can be expressed in terms of

their even- and odd-mode admittances. In general, if strip

k is connected between nodes 2k – 1 and 2k, and strip

k + 1 is connected between nodes 2k + 1 (2(k + 1) – 1 = 2k

+1) and 2(k + 1), the self-admittances at nodes 2k – 1,

2k, 2k +1, and 2k+2 are

[

Y Y
+ coth(y/J) +

oo/c2(k+lJ coth(y~,(~+l)z
) k=l

Y(2k–1). (2k–1) = TT

\

%k;k+u coth(Yk,(k+J)
k+l

Y2k,2k = ‘(2k–l),(2k–1)

[

Y

) ‘oo(;’)’k0’:+1)Cd(y(k+l)z + coth(y(k+l),kl)

Y(2k+l),(2k+l) = y
Oo(k+l), k Coth(y(k+l)>kz

2 )

Y(2k+2),(2k+2) = q2k+1) @~+l).

The mutual admittances for the nodes 2k – 1 and 2k, on strip k, are

[-

Y Y
+ csch(ykl) – ‘ok;k+l) csch(yk,(k+l)z)

‘(2k-l),2k = y

. 0ok2(k+1) cwh(yk, (k+l)z
)

‘2k, (2k–1) = ‘(2k–l),2k.

The mutual admittances for the nodes on strip k +1, 2k + 1, and 2k + 2 are

{

Y Y
— 0’:+1) csch(Y(k+l)l)– ‘“(; l)’k cSch(Y(k+l),kz )

‘(2k+l),(2k+2) = Y
— “’(;l)’ k csch(l’(k+l), / )

k=N–1

k#N–1

k=l

k+l

k=N–1

k#N–1

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)Y(2k+2),(2k+l) = q2k+1),(2k+2).
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The mutual admittances for the nodes 2k – 1 and 2k, on

strip k, with respect to the nodes on strip k + 1 are

Y
Y (2k–l),(2k+l) = : coth (y~z)

Y
— OOk:k+l)coth(yk,(~+l)z)(36)

Y
Y (2k–l),(2k+2) = – ~ csch(y~l)

Y
+ Ook;k+l)cd (Yk,(k+l)z) (37)

Y (2k,2k+l) = q2k_1),(2k+2) (38)

Y2k, (2k+2) = q2k_1),(2k+1). (39)

The mutual admittances for the nodes 2k + 1 and 2k + 2,

on strip k +1, with respect to the nodes on strip k are

Y
Y (2/c+ l),(2k-1) = O’;+l) coth(y(k+l)l)

—

‘(2k+l),2k = –

+

Y
OO(;l)’k coth(Y(k+l)>kl ) (40)

Y
O’;+l) csch(y[k+l)l)

Y
Oo(;l)’kcwh(y(~+l),kz) (41)

Y (2k+2),(2k–1) = ‘(2k+l),2k ‘ (42)

Y(2k+2),2k = ‘(2k+l),(2k–1). (43)

The analysis is performed by evaluating the admittances

defined by (28)-(43) for values of k from 1 (the first line)

to N – 1, where N is the last line.

The admittance matrix defined in this manner com-

pletely characterizes the array of coupled lines, since any

voltage or current at any of the nodes can be obtained by

reduction of this matrix.

IX. EXAMPLE-ANALYSIS OF A COUPLER FORMED

BY Two UNEQUAL WIDTH LINES

Cristal described a nonsymmetrical 10-db directional

coupler, and this will be used as an example of the use of

the equations shown above [11]. The coupler is meant to

provide 10 dB of coupling into a 75-Q termination while

the through-ports are to be terminated in 50 Q. The

schematic arrangement is shown in Fig. 5. The physical

dimensions are
b = 625 mds

t = 250 roils

‘t
– = 0.400
b

: = 0.508

+ = 0.111

;=0.233.

Port 3 Port 4

‘ode’ ? ? ‘“de’

T
1968

L 1!All dimensions in roils

Node1 0 0 Node3

Port 2 Port 1

Fig. 5. Layout of a nonsymmetrical 10-dB coupler

The coupling capacitance is determined using (4), (5), and

(6):

A = 2.97404

[1

cc— = 0.66746
e ~=o

S = 1.98505.
&

The external fringing capacitance is calculated using (7):

2 = 0.91860
&

and the internal fringing is calculated using (8) and (9):

B = -0.22400

Cfel = cfe2 = 034488

E E“”

The parallel-plate capacitances are determined using

(14). The effective width for either strip is the physical

width of the strip since the condition given in (13b) is true:

‘!= 1.69333
E

$+= 0.3700.
E

Since there are only two strips, (15) and (16) provide the

self-capacitances:

% = 5.91361
&

2 = 3.26695.
e

The values of even-mode and coupling capacitances

should be compared with those used by Cristal in obtain-

ing the required physical dimensions from Getsinger’s
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graphs:

Capacitance This method Cristal

cc. 1.985 2.050
&

c1
5.914 5.891

E

C2
3.267 3.244.

&

If it assumed that the material being used is copper, the

skin depth at 1.5 GHz can be calculated:

8 = 0,06712 rnds.

The new dimensions needed to obtain the new values of

capacitance that are to be used in the calculation of the

losses are

b’= b + 8 = 625.067 mik
t!= t– ~ = 249.933 roils

W( = WI – 8 = 317.433 roils

w~= w2–6=69.308mils

s’=s+8=145.692 roils.

These new dimensions are used in the same manner as

the original dimensions to obtain the self- and coupling

capacitances:

~ = 1.98368
E

~ = 5.91137
&

2 = 3.26565.
&

The attenuation factors are calculated using (20), (21), and

(22):

alz = .00795 Np/m

a21 = .00879 Np/m

al= .00597 Np/m

az = .00625 Np/m.

The even-mode admittances for strips 1 and 2 are calcu-

lated using (26):

Yoel = 0.01570 s

~,z = 0.00867 S.Y

The odd-mode admittances are obtained

With the nodes

the ends of line 1,

~012= 0.02624 SY

~021= 0.01921 S.Y

from (27):

as shown in Fig. 5, nodes 1 and 2 are at

and nodes 3 and 4 are at the ends of line

2; the elements of the admittance matrix are

Y,, = ~[.01570coth [(.00597+ jP)z]

+ .02624coth [(.00795 + jP)z] ]

Yl, = *[ – .01570csch [(.00597+ jP)z]

- .02642 csch[(.00795 + jL?)z] ]

Y13 = ~ [.01570coth [(.00597 + jp)l]

- .02624csch [(.00795+ jfl)l] ]

Yl, = ~ [ - .01570csch [(.00597 + j~)z]

+ .02624csch [(.00795 + j3)z] ]

Y21= Y12

Y22 = Yll

Y*3 = Y14

Y24 = Y13

Y31= ~ [.00867coth [(.00625 + j~)l]

-.01921 coth [(.00879+ j13)z] ]

Y,, = ~ [ - .00867csch [(.00625+ jfl)l]

+ .01921 csch[(.00879 + j~)l] ]

Y33= ~ [.00867coth [(.00625 + jP)z]

+ .01921 coth [( .00879 + jB)z]

Y,. = ~ [ - .00867csch [(.00625+ j~)l]

- .1921csch [(.00879+ .IF)z]:

Y41 = Y32

Y42 = Y31

Y43 = Y34

Y44 = Y33.

This essentially completes the analysis

Y-parameters are completely specified.

X. CONCLUSIONS

since the 4-port

A procedure for analyzing edge-coupled slab and strip-

Iine arrays has been presented. Since it utilizes simple

analytic expressions to replace graphical interpretation or

the more complex evaluation of elliptic integrals and their

arguments, it is ideally suited for computer-aided analysis

and optimization. The analysis is performed by completely

transforming the physical attributes of the coupled line

array into Y-parameters which include the effects of loss in

the metal and dielectric material.

[1]

[2]
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