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Analysis of Edge-Coupled Shielded Strip and
Slabline Structures

STEWART M. PERLOW, SENIOR MEMBER, IEEE

Abstract — A method for the analysis of edge-coupled strip and slabline
structures is presented which uses relatively simple algebraic expressions.
The described procedure can be used to analyze directional couplers,
interdigitated and comb line filters, and any other structures formed by an
array of rectangular edge-coupled transmission lines, of arbitrary thick-
ness, situated between two parallel plates. The analysis is complete in that
it allows the conversion of the physical dimensions of the structure into a
set of admittance parameters which completely describes its electrical
behavior, including both conductor and dielectric losses.

1. INTRODUCTION

NALYSIS OF shielded strip or slabline structures,

such as directional couplers or interdigitated and
comb line filters, requires a technique for converting the
physical dimensions of the circuit into electrical parame-
ters. Cohn has provided rigorous formulas relating the
dimensions of zero-thickness coupled striplines to their
odd- and even-mode impedances [1]. These solutions are
based on successive transformations in a conformal map-
ping technique. He attempted to extend these results to
thick strips by utilizing intuitive approximations for the
odd- and even-mode fringing capacitance of the thick
strips. These approximations work well over a limited
range of strip thicknesses and strip separations.

Getsinger provided a rigorous solution for the thick-strip
case by using an exact conformal mapping method [2].
However, his analytic resuits are given in terms of various
elliptic functions which require a complicated process of
evaluation of the functions themselves and the arguments
of the functions. In order to make these results useful to
the circuit designer, Getsinger provides accurate graphs
which are used to extract the desired information.

Unfortunately, neither form of Getsinger’s solution, ana-
lytic or graphical, is readily adaptable to computer-aided
design algorithms. The analytic results require com-
plicated, time-consuming algorithms for evaluation. The
graphical results could be accommodated by storing data
for each curve in memory and interpolating between data
points for values that are not stored. Although this tech-
nique is acceptable in extreme circumstances, it certainly
does not make efficient use of computer memory.

The technique developed in this discussion utilizes easily
solvable analytic expressions, based upon both Cohn’s and
Getsinger’s results. In addition, it extends these results by
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providing an expression for the effective width of very
narrow strips. The effect of conductor and dielectric losses
is also included. The expressions provide a method for
achieving a very efficient algorithm for the analysis of
edge-coupled strip and slabline structures which can be
used on a computer or even on hand-held scientific calcu-
lators.

II. CHARACTERISTIC ADMITTANCE

In considering the analysis of an array of coupled lines,
the admittance matrix for the entire array can be formed if
the odd- and even-mode admittances between adjacent
lines along with the appropriate propagation constants are
known.

Transmission-line theory shows that the relationship
between the characteristic admittance of a lossless uniform
transmission line, which is operated in the TEM mode, and
the static capacitance per unit length is

Yy=0C="—— (1)
where

v speed of propagation along the line,

e, relative dielectric constant of the medium,
e permitivity of the dielectric medium,

1 impedance of free space (376.73 Q /0).

In the case of two coupled transmission lines operating
in the TEM mode, propagation along the lines can be
broken into two independent or orthogonal modes. In the
most general case, these two modes are referred to as the
IT and C modes [3]. Since this discussion will be limited to
a medium which is uniform or homogeneous, these two
modes reduce to the well-known odd and even modes [1],
[4], [5]. The characteristic admittance of the odd mode for
each of the coupled strips is the same as the admittance for
cach of the strips if an electric wall (at the same potential
as the upper and lower shielding planes) were placed
between them. The characteristic admittance for the even
mode for each of the strips is the same as the admittance
of each strip if the electric wall were replaced by a mag-
netic wall. ‘

The even-mode characteristic admittance of each line is
related to the self-capacitance of the line (the capacitance
between the line and ground), which is also known as the
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even-mode capacitance, by the relationship
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fe Co 2b
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where the subscripts refer to the first and second strips.

The odd-mode characteristic admittance of each line is
related to the coupling capacitance between the lines and
the self-capacitance of the lines by the relationships

) ‘/g(zcc_l_cel)

0012
€ €

(3a)

Yo,00=— 3b
T . (3b)
It is easily seen that if the self-capacitances and the
coupling capacitances are determined, the even- and odd-
mode admittances are known.

ﬁ(zcc+cez)

III. THE CoUPLING CAPACITANCE

Fig. 1(a) provides a representation of the physical di-
mensions of a coupled line array. The capacitive compo-
nents of the lines are shown in Fig. 1(b). It will be assumed
in this discussion that the thicknesses of all the strips in
the array are the same and that the coupling between
nonadjacent strips is negligible.

The coupling capacitance per unit length of the lines, C,,
can be calculated using the exact analytic equations for the
even- and odd-mode fringing capacitances given by Cohn
for zero-thickness lines, and compensating for line thick-
ness by the value 4 as shown in (4), (5), and (6) below. The
capacitance per unit length for a strip of thickness ¢, which
is a function of the strip separation s, and ground-plane

spacing b is
C C
_C=A[_c] (4)
€ € li=0

where the coupling capacitance per unit length for zero-
thickness strips is

15 2l (53]

(5)

and
{5\ 057518 §
1.0+2.13507—| - —<0.3
e e
N { s\ 011467 s
1.0+3. 1—{— —->0.3.
ot

The thick strip correction factor A was derived from
Getsinger’s results [2] by a judicious choice of normaliza-
tion factors.

IV. FRINGING CAPACITANCES

The fringing capacitances represent the nonuniform field
regions on the edges and corners of the strips. In this
discussion, two types of fringing capacitances will be con-
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(2) Physical structure of coupled line array. (b) Capacitive
components of the array.

Fig. 1.

sidered. The outside edges of the first and the last strip
have the same fringing capacitance that a single isolated
strip would have. This will be called the external fringing
capacitance; it is denoted by C; and is a function only of
the strip’s thickness and the separation between ground
planes. The second type occurs on the interior edges of the
strips and is denoted by Cj,. This interior fringing capaci-
tance, also known as the even-mode fringing capacitance,
is a function of strip thickness, ground-plane separation,
and spacing between adjacent strips.

The external fringing capacitance C; can be determined
by subtracting the parallel-plate capacitance from the total
capacitance of a single isolated strip between ground planes
[6] or by using the exact equation for a semi-infinite strip
given by Cohn [7]:

% = %[%bln(tb +1)-(1,-D(i2-1)]  (7)

where
1

The internal, or even-mode, fringing capacitance Cres
like the coupling capacitance, is a function of the strip
thickness, the separation of the ground planes, and the
spacing between the strips. It can be calculated from

G

eAszl[h“]JrB (8
e {b—wnCOS(Zb)} )
where A is the value defined in (6) and B is defined as

follows.
For ¢ /b < 0.5636,

t,=

<0.08

s
- (0.2933 +3.333 ~b—)

B=

©)

| v | @
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@
]
0
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For ¢ /b > 0.5636,

s st
—0.1653—5.6814— +6.7475— — .
0.1653 56814b 75b 5 < 0.08

> 0.08.
(10)

The coefficient of the 4 term in (8) is Cohn’s formula for
the even-mode fringing capacitance for the zero-thickness
case. The equations determining the value of B were
generated from Getsinger’s data.

|t |

t
—0.62+0.54Z

V. PARALLEL-PLATE CAPACITANCE

The fringing capacitances derived by Cohn and Getsinger
were obtained assuming that each strip was of semi-
infinite width. This assumption was required to eliminate
the possibility of any interaction between the fringing
fields on both edges of the strip. If the width of any of the
strips is small enough, the distortion of the fields at the
edges of the strip can extend across the entire width of the
strip, eliminating the parallel-plate region completely.
Getsinger approached this problem by defining an effec-
tive width w_, which was related to the physical width by
the relationship w, =1.2w —0.07(b — ¢). This relationship
was to be used if w<0.35(b—1¢); it is valid if 0.1<
W/ (b—1)<0.35. This formula is based on a linear
approximation to the exact fringing capacitance of a single
strip of zero thickness. Riblet has pointed out that. this
criterion, based on zero-thickness strip, is too cautious for
strips with thickness [8].

A better approximation for the effective width can be
obtained by subtracting the fringing capacitances from the
total capacitance of an isolated thick strip. The resulting
capacitance is the effective parallel-plate capacitance per
unit length. The effective width of the parllel-plate or
uniform field region is then calculated from the effective
capacitance. Fig. 2 shows the relationship between the
physical width and the effective widith for several values of
thickness, along with the results using Getsinger’s linear
approximation. For zero-thickness strips, the linear ap-
proximation is very accurate in the region 0.142 <w /b <
0.27. Above w/b=0.27, the linear approximation in-
creases a little too rapidly. As the thickness increases, the
discrepancy between the two approximations increases.
The linear approximation indicates that the effective width
is not the same as the physical width when ¢/b = 0.2 and
w /b is less than 0.28. The thick-strip approximation indi-
cates that both widths are the same for a value of w /b as
small as 0.1 and are very nearly equal for values of w /b as
small as 0.05. For ¢/b = 0.4, the effective width and the
physical width are the same for values of w /b > 0.04. The
linear approximation indicates that this condition is not
met until w /b is at least 0.21.

The following equation relating the physical width w to
the effective width w, was obtained by using [6] to
calculate the total capacitance of a thick strip of any

4
............. t/b=.4
——=- t/b=.2
——————— t/b=0
3
a L
~
= 2r
(6] .
3
A
7
N
F //
7
L s
0 A I I I
0 1 3 4

.2
w/b
Fig. 2. Relationship between the effective and physical widths of

finite-width strips of various thicknesses (calculated using (11)) along
with Getsinger’s linear approximation.

width:
2
wt
W o _ Z_VVCO 1f0_ ;Z‘<0015
b
w wt
— ——>0.015
b bb
(11)
where
2 w 1
VVCO=;1112+Z— 5 p— (12)
—ln[2coth(——)]
T 4 p

is the correction for zero-thickness strips.

Examination of the correction term indicates that the
difference between the effective width and the physical
width is negligibly small if

w
—>04 (13a)
b
or
w  0.015
3 >— (13b)

The parallel-plate capacitance from the strip to one of the
grounding planes, C,, is calculated using the effective
width:
C w
~r _ 2 eff )
3 b—t

(14)

VI. THE TOTAL SELF- OR EVEN-MODE CAPACITANCE

The total self-capacitance (the even-mode capacitance)
for each strip of the array can be calculated as the sum of
all the component capacitances, as shown in Fig. 1(b).
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Reduction of physical dimensions by the skin depth.

The first and the last strip of the array each have an
external fringing capacitance, a parallel-plate capacitance,
and an internal or even-mode fringing capacitance compo-
nent. Therefore, the total self-capacitance is

C,=2C+Cy+Cyy)
Cy=2(C+Coy+Croy)

(15)
(16)

where the subscript 1 refers to the first line, and subscript
N to the last line.

Each of the interior lines has two even-mode fringing
capacitance components and a parallel-plate component:

Cr= 2(Cfe(k—1) + Gyt Cfek) (17)

where the subscript k refers to the strip; Cp,(,_qy is the
even-mode fringing of the strip on the edge closest to the
previous strip; and C,,, is the even-mode fringing capaci-
tance on the edge closest to the next strip. Note that the
external fringing capacitance C; is the same for the first
and the last strip since it is implicitly assumed that all
strips are of the same thickness. -

VIIL

The losses of the coupled line array are characterized by
using the attenuation constant «, which is the real part of
the propagation constant. The calculation of the compo-
nent of « due to conductor losses is accomplished by using
Wheeler’s incremental inductance rule and numerical dif-
ferentiation {9], [10]. The process is very simple. The skin
depth 8§ is calculated using the relative resistivity of the
metal being used as

P,
§=0.0822,/ —
f

where p, is the resistivity of the metal relative to copper, f
is the frequency in gigahertz, and § is the skin depth in
mils.

The coupling capacitances and self-capacitances are
calculated using the physical dimensions. They are then
recalculated using the new dimensions which would occur
if each metal surface were reduced by the value of 8/2, as
shown in Fig. 3. The new dimensions become

LINE LOSSES

(18)

b'=b+8
t'=t—8
wi=w,—0 (19)
si=s,+8

where subscript k refers to a particular strip.
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The attenuation constants can then be calculated using
the original values of capacitance, C; and Cy (4,4, and
the new values calculated using the dimensions corrected
by thg skin depth, C/ and C{ (1, (the subscripts k,(k +1)
referring to the coupling capacitance between strips k£ and
k+1):

(Np/m)

(20)

Clery T2C w1y (Np,/m)
I Cik+y T2C, k41
(21)

(22)

g (k+1)

I [y Gt 2Ckun
" 0.2998 Ce+2C ke

A1y = T, 0.2998

!, (¢
%= 7% 52058 - (ck)](Np/ m)-

The attenuation constants with a single subscript are the
even-mode attenuation constants and those with the dou-
ble subscript are the odd-mode attenuation constants. Note
that between every pair of lines there are two different
attenuation constants. In general, they have different val-
ues; to be equal the even-mode capacitances must be
equal.

The component of the attenuation constant due to losses
in the dielectric is calculated as

f
——tan(§,) (N
where tan$, is the loss tangent of the dielectric.
In addition to specifying the attenuation constant, the
imaginary part of the propagation constant, S8, is also
required:

o, =T

27 27\/5
=— = 24
p== (24)
where
11.808 29 98
Ao= 7 (cm).

The propagation constants are

=(a,+ta,)+ B
Ve, (k+1) = = (st a)t B

Yok 1),k = (agsn et a,)+ jB.

- (29)

VIIIL

The admittance matrix for the coupled line array com-
pletely describes the network. The elements of the admit-
tance matrix are functions of the odd- and even-mode
admittances [11]. The odd- and even-mode admittances
were described in (2) and (3) in terms of the coupling
capacitances and the self-capacitances. The general form
of the mode admittances of the k and the k +1 line of the

THE ADMITTANCE MATRIX
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array is
even mode:
fe, Ci
Y. = — 26
Oek n € ( a)
fe, C
V& Lusy
Voury =0 = (26b)
odd mode:
Ve, (2€ C
r (k, k+1) k
Yook, (k+1y = (_e + T) (27a)
e, [ 2€, C
r (k,k+1) (k+1)
Yootks1),6= 71—( . + - ) (27b)

If the nodes of the network are arranged as shown in
Fig. 4, where nodes 1 and 2 are at the ends of strip 1,
nodes 3 and 4 are at the ends of strip 2, and in general the
nodes 2k —1 and 2k are at the ends of strip k, then the
admittance matrix of the coupled lines is of the form

Y11 Y12 Ii,m Yi2n
Y Y Y2, m Yaon
yml ym2 ym,m ym.ZN
Yana  Vawn2 Yan.m Yanan

Ye
%coth(ykl)i—

Y(2k—1),(2k—1) = Y.
Ook,(k+1)

) COth(Yk,(k+1)l)

Y2k,2k = Y(Zk—l),(2k~1)

YOok,(k+1)

2 4 2k 2(k+1) 2N

O O O
— N X + z
0. a o " o
Y ¥ 000000000 ¥ 0. | 0000 %
b= = = x I
] ] n = n

7]

O Q O

1 3 2k-1 2k+1 2N-1

Fig. 4. Numbering of nodes of the coupled line array.

where the subscripts refer to the nodes at the ends of the
strips, and N is the number of strips.

The admittance matrix can be filled in the standard way,
ie.,

1) The self-admittance of node m is the sum of all the
admittances connected to node m,

2) The mutual admittance between node m and m +1 is
the negative of the admittance connected directly between
nodes m and m +1. :

The self- and mutual admittances for any two adjacent
lines in the coupled line array can be expressed in terms of
their even- and odd-mode admittances. In general, if strip
k is connected between nodes 2k —1 and 2k, and strip
k +1 is connected between nodes 2k +1 (2(k +1)—1=2k
+1) and 2(k +1), the self-admittances at nodes 2k —1,
2k, 2k +1, and 2k +2 are

coth (v, (xq1)/) k=1

(28)
k#1

(29)

Yoeck+1) Yoock+1).k
Tcoth(y(kH)I)Jr—2—coth(y(k+1),k1) k=N-1
Y(2k+1),(2k+1) = Y, D).k (30)
o(k+1),
——2——coth(y(k+1)’kl) k#+N-1
Yore,eh+2) = Yor+1),00+1)- (31)
The mutual admittances for the nodes 2k —1 and 2k, on strip k, are
Yoex Yook, i
- csch(ykl)—Mcsch(yk‘(,ﬁl)l) k=1
Y(2k—1),2k = Yoo . (32)
——‘2——csch(yk,(k+1)l) k#1

Y2k,(2k—1) = Y(Zk—l),zk'

(33)

The mutual admittances for the nodes on strip k +1, 2k +1, and 2k +2 are |

_ Yook
2

Y(2k+1).(2k+2) = Y
_ Too(k+1),k

2 esch (Yo 1y, 4!)

Y(2k+ 2.Qk+1) Y(2k+ 1),2k+2)"

csch(y(k+1)l)—

YYOo(k 1,k
—-;csch(y(kﬂ))kl) k=N-1

(34)

(35)
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The mutual admittances for the nodes 2k —1 and 2k, on
strip &, with respect to the nodes on strip k +1 are

YOek
Yor-1,0een= "5 coth (y,/)

_ Yook, (k41

,2 COth(Yk,(k+1)I) (36)

YOek
Y(Zk—l).(2k+2) =- “2“ CSCh(Ykl)

Yook, ck+1)

(37)
(38)
(39)

The mutual admittances for the nodes 2k +1 and 2k +2,
on strip k£ +1, with respect to the nodes on strip & are

csch ('Yk,(k+1)l)

Y(2k,2k+ - Y(2k—1),(2k+2)

Yok on+2 = Yok-1,0k+1)-

YOe(k+1)

Yorin.oe-n= COth(Y(k+ 1)1)
Y, (k+1), k
- _OT_ COth(Y(k+1),k1) (40)
Yoe(k+1)
Yorinoe="— —ez_ CSCh(Y(k+1)l)
¥, (k+1),k
- CSCh(Y(k+1),kl) (41)
Y(2k+2),(2k—1) T Lor+1),2k ' (42)
Y(2k+2),2k= Qk+1),2k—1). (43)

The analysis is performed by evaluating the admittances
defined by (28)—(43) for values of k from 1 (the first line)
to N —1, where N is the last line.

The admittance matrix defined in this manner com-
pletely characterizes the array of coupled lines, since any
voltage or current at any of the nodes can be obtained by
reduction of this matrix.

IX. ExXAMPLE—ANALYSIS OF A COUPLER FORMED
BY Two UNEQUAL WIDTH LINES

Cristal described a nonsymmetrical 10-db directional
coupler, and this will be used as an example of the use of
the equations shown above [11]. The coupler is meant to
provide 10 dB of coupling into a 75-8 termination while
the through-ports are to be terminated in 50 §. The
schematic arrangement is shown in Fig. 5. The physical
dimensions are

b =625 mils
t =250 mils
Yt
—=0.400
b
ML 0508
b - .
Wy
— =0.111
b

’ 0.233
b_ . -

527
///// 7722772222272, /////// )
327 5 %l |<— 69.4
W2z /// / ///// )
Port 3 Port 4
Node 2 T Node 4
Al dimensions in mils
1968
Node 1 4) Node 3

Port 2 Port 1

Fig. 5. Layout of a nonsymmetrical 10-dB coupler.

The coupling capacitance is determined using (4), (5), and
6):
A=12.97404

CC
[—] =0.66746
€ lr=0
C,
— =1.98505.
€
The external fringing capacitance is calculated using (7):

G
-~ =(.91860

€

and the internal fringing is calculated using (8) and (9):

B = —0.22400

C

I T2 ().34488.
€ €

The parallel-plate capacitances are determined using
(14). The effective width for either strip is the physical
width of the strip since the condition given in (13b) is true:

Pl 169333

€

G
—-=0.3700.

€

Since there are only two strips, (15) and (16) provide the
self-capacitances:

Cl
— =5.91361

€

G
—==3.26695.
&
The values of even-mode and coupling capacitances
should be compared with those used by Cristal in obtain-
ing the required physical dimensions from Getsinger’s
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graphs:
Capacitance This method Cristal

C,

—= 1.985 2.050
€

Cl

— 5.914 5.891
€

G

— 3.267 3.244,
€

If it assumed that the material being used is copper, the
skin depth at 1.5 GHz can be calculated:

8 =0.06712 mils.

The new dimensions needed to obtain the new values of
capacitance that are to be used in the calculation of the
losses are

b’ =b+8=625.067 mils
/=t — § =249.933 mils
w{=w, — 8 =317.433 mils

wh =w, — 8 =69.308 mils
s’ =5+ 8=145.692 mils.

These new dimensions are used in the same manner as
the original dimensions to obtain the self- and coupling
capacitances:

Cl
12 _1.98368

&

C
=5.91137

<
€
G

—2 —3.26565.
€

The attenuation factors are calculated using (20), (21), and
(22):

a;, =.00795 Np/m

o, =.00879 Np/m

a, =.00597 Np/m
a, =.00625 Np/m.

The even-mode admittances for strips 1 and 2 are calcu-
lated using (26):

Y, =0.01570 S
Y,,, = 0.00867 S.

The odd-mode admittances are obtained from (27):

Yy, =0.02624 S
Yy, = 0.01921S.

With the nodes as shown in Fig. 5, nodes 1 and 2 are at
the ends of line 1, and nodes 3 and 4 are at the ends of line

2; the elements of the admittance matrix are

Y,, = 1[.01570coth [(.00597 + jiB)!]
+.02624coth [(.00795 + jB)!]]
Y, =3[~ .01570csch [(.00597 + jB)!]
—.02642csch[(.00795+ jB)/]]
Y,; = [.01570coth [(.00597 + jB)!]
—.02624csch [(.00795 + jB)!]]
Y, =3[ - .01570csch [(.00597 + jB)!]
+.02624csch [(.00795+ jB)!]]

h="Y,
Yo=1,
Y=Yy,
Y=Yy

Yy, = 1[.00867 coth [(.00625+ j8)!]
—.01921 coth [(.00879+ jB)!]]
Yy, = 1[—.00867csch [(.00625+ jB)!]
+.01921 csch[(.00879+ jB)/]]
11.00867 coth [(.00625+ jB)!]
+.01921 coth [(.00879+ jB)!]]
Ys, =1[—.00867csch [(.00625+ jB)!]
— 1921 csch [(.00879+ jB)!]]

I

Yy

Y=Y,
Y=Yy
Yy 5=Y3
Yo =Y.

This essentially completes the analysis since the 4-port
Y-parameters are completely specified.

X. CONCLUSIONS

A procedure for analyzing edge-coupled slab and strip-
line arrays has been presented. Since it utilizes simple
analytic expressions to replace graphical interpretation or
the more complex evaluation of elliptic integrals and their
arguments, it is ideally suited for computer-aided analysis
and optimization. The analysis is performed by completely
transforming the physical attributes of the coupled line
array into Y-parameters which include the effects of loss in
the metal and dielectric material.

v
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